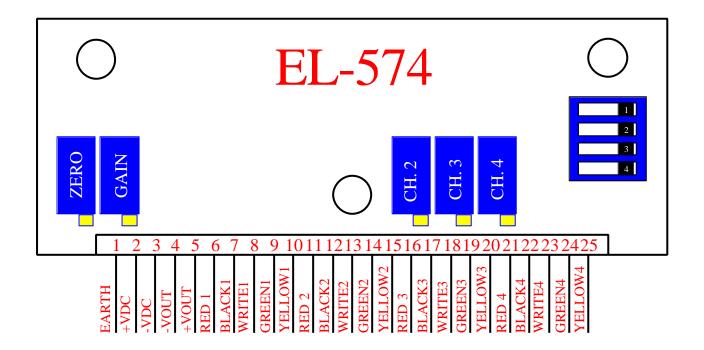
SUMMING UNIT

SURFACE MOUNTING CARD

MOD. EL 574

Rev. 29/10/2001


DS EUROPE S.r.l.

Via F. Russoli , 6 20143 MILANO Tel. 02 8910142 (4 linee R.A.) Fax. 02 89124848 8910145 E-mail : dseurope@dseurope.it

MANUALE PRELIMINARE AN 201 VO REV. 0 del 12/10/01

A) **C**ONNECTIONS

Summing unit MOD. EL 574

PIN	DESCRIZIONE	PIN	DESCRIZIONE
1	EARTH	14	GREEN (Load Cell 2)
2	+VDC (Power Supply)	15	YELLOW (Load Cell 2)
3	-VDC (Power Supply)	16	RED (Load Cell 3)
4	-VOUT (Output)	17	BLACK (Load Cell 3)
5	+VOUT (Output)	18	WRITE (Load Cell 3)
6	RED (Load Cell 1)	19	GREEN (Load Cell 3)
7	BLACK (Load Cell 1)	20	YELLOW (Load Cell 3)
8	WRITE (Load Cell 1)	21	RED (Load Cell 4)
9	GREEN (Load Cell 1)	22	BLACK (Load Cell 4)
10	YELLOW (Load Cell 1)	23	WRITE (Load Cell 4)
11	RED (Load Cell 2)	24	GREEN (Load Cell 4)
12	BLACK (Load Cell 2)	25	YELLOW (Load Cell 4)
13	WRITE (Load Cell 2)		

B) TECHNICAL FEATURES

- Load Cells to be connected: 1 up to 4.
- EL 574 Power Supply; Output; Load Cell Power Supply.

EL 574 POWER SUPPLY	OUTPUT	POWER SUPPLY OF LOAD CELLS
12 Vdc	0÷±5,0 ÷±10 Vdc	10 Vdc
24 Vdc	0÷±5,0 ÷±10 Vdc	10 Vdc

- Gain setting: 1÷250 for every used channel. (100 when 4 channels are used).
- Zero setting: 0÷100 %
- Working temperature: $0 \div +70^{\circ}$ C.
- **Power supply:** filtered and stabilized.

C) CONNECTIONS

- It is advisable not to connect -Vdc with -Vout in order to have an insulation up to 1000
 Vdc between power supply and sensors. It is in any case possible to connect them together.
- **Connect load cells in a raising order of sensitivity** (with same power supply) starting from channel 1.

Look for **sensitivity** values in the certificates (mV/V): these are the maximum signals of sensors at FS for every Volt of power supply.

D) CALIBRATION AND EQUALIZATION WITH BUILT-IN CALIBRATION CIRCUITRY

• Built-in calibration circuitry: It is very useful when it is not available a specimen or a press with another load cell as reference.

All transducers made by DS Europe have a built-in calibration circuitry together with a calibration certificate that states what is the physical correspondence (Kg, tons) of the electrical signal obtained when using the calibration circuitry.

Calculate for each load cell connected:

Cal. (Kg)	=	Equivalent load value as expressed in the certificate in Kg, tons.
Vout.attr.(V)	=	Maximum signal from each load cell at FS after equalization.
FS (Kg)	=	Full scale of load cells.
X (V)	=	Signal obtained from each load cell when using the built-in circuitry by means of switches 1, 2, 3 and 4 on pins 1 and 2.
Vout.(V)	=	Output (5 or 10 Vdc).
<u>Vout.(V)</u> number of lo	= ad cel	Vout.attr. (V)

<u>Vout.attr. (V) x Cal. (Kg)</u> = X (V)

• Connect all load cell and set <u>zero trimmer P4</u> up to get an output of <u>0 volt</u>.

Use calibration circuitry of load cell 1 by means of <u>switch 1</u>. Set (<u>gain trimmer P5</u>) up to obtain X (V), from load cell on channel 1.

- Switch of **Switch 1**.
- Do not modify any more setting of trimmers P4 and P5, switch on switch 2 (calibration equivalent circuitry of load cell 2) and set <u>trimmer P1</u> up to obtain X(V) from load cell on channel 2.
- Switch off switch 2
- Proceed as overmentioned for load cells on channels 3 and 4.
- Verify calibration by switching on at the same time all switches used before in order to obtain the <u>sum</u> of all X (V).

E) CALIBRATION WITH SPECIMEN

It is the same procedure like built-in calibration circuitry except for:

- **Cal. (Kg)** = It is the specimen applied on every load cell, or force applied by using a press and a reference load cell.
- **Switch** = Are no more used, only set trimmers after having applied the specimen on the corresponding load cell.